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ABSTRACT

A boundary collocation method is presented for the computation of

eigenvalues and eigenfunctions of the Laplacian on bounded simply connected

plane regions with smooth boundary. Particular emphasis is placed on the

selection of an appropriate function space and its basis for the approximation

of the eigenfunctions. Numerical examples are presented.
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SIGNIFICANCE AND EXPLANATION

Several successful applications of the boundary collocation method for

computing eigenvalues and eigenfunctions of the Laplacian on certain regions

exist in the literature (see e.g. Fox, Henrici and Moler [5], and Moler

[61). However, Bates and Ng (1] reported that the method did not converge for

some regions. We suggest a strategy for selecting collocation points,

function space for the approximation of eigenfunctions, and basis of this

function space. Our results apply to regions for which there are convergence

difficulties with the methods referred to above.

2, r

The responsibility for the wording and views expressed in this descriptive
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A COLLOCATION METHOD FOR COMPUTING EIGENVALUES

AND EIGENFUNCTIONS OF THE LAPLACIAN

Lothar Reichel

1. INTRODUCTION

Let 9 be a bounded simply connected plane open region with smooth

boundary 30, and let a := 9 U a. We consider the computation of

eigenvalues X and eigenfunctions u of

Au + Au 0 in 12

(1.1) {o u =0 on a •

Several successful applications of the boundary collocation method to solve

this problem on certain regions exist in the literature, see e.g. Fox, Henrici

and Moler [5], and Moler (6]. The purpose of this paper is to describe a

strategy for choosing collocation points and function space for the

approximation of eigenfunctions. We also discuss the selection of basis of

the function space. The need for such a strategy is illustrated by the

computational results of Rates and Ng (1]. Choosing function space and

collocation points quite arbitrarily, they not seldom experience convergence

difficulties and conclude [1], p. 153, 'The point matching or collocation

method is an attractive economique technique from the point of view of

programming and computer time C....]. Unfortunately the method is not always

valid'. Nonconvex regions appear to be especially difficult.

We will represent eigenfunctions using an integral operator introduced by

Vekua [91. This operator maps functions analytic in A onto solutions of

(1.1). The connection between eigenfunctions and analytic functions, to be

described in detail in Section 2, implies that the approximation of an

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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eigenfunction is equivalent to the approximation of a certain analytic

function on 9. The selection of function space for the approximation of

eigenfunctions can be studied by considering the approximation of analytic

functions in 9. Approximation of analytic functions in 9 by rational

functions with fixed poles is discussed in Section 3. When approximating

analytic functions by rational functions with fixed poles using interpolation,

the poles and interpolations points (= collocation points) should not be

allocated independently. The connection between analytic functions and

solutions of (1.1), as well as the reported difficulties in Bates and Ng [1],

suggest that the choice of function space for the approximation of

eigenfunctions and the selection of collocation points should not be done

independently either. We begin by allocating collocation points on 30, and

then define a function space which depends on the distribution of collocation

points. Our collocations scheme is presented in Section 4, which also

contains a brief discussion on the computation of error bounds derived by

Moler and Payne [7]. Numerical examples are found in Section 5.
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2. AN INTEGRAL REPRESFMTATION

This section summarizes some relevant results on the integral operator of

Vekua, and on the smoothness of the eigenfunctions. Let 0 be as in Section

1, and let CP'Y(5) denote the set of functions whose pth derivative

is H5dler continuous on 5 with H5lder constant Y. Let A denote a real

nonnegative constant. The following lemma is a special case of Theorem 4.2 of

Eisenstat (3].

Lemma 2.1

Let u e c2 () n Cp'(a), p + Y > 0, satisfy

(2.1) Au + Au - 0 in •

Then u has the representation

(2.2) u(z) =Re(c(z) - A- (-Z-;) fI u(o)J(/~)z;)d) z e
" 1/

z1

where f(z) is a function analytic in 9 and * e cP Y(9). J1(r) denotes

the lst order Bessel function of the 1st kind. # is uniquely determined by

the requirement Imr(z ) 0. z is an arbitrary but fixed point in Q. z

denotes the complex conjugate of z, and similarly for z

Conversely, if f is analytic in 9 and f e CPOY(5), then u defined

by (2.2) satisfies (2.1) and u e c 2() n CP'Y(,).

The lemma shows that the approximation of an eigenfunction of (1.1) is

equivalent to the approximation of an analytic function #. If 3D is

analytic, then u solving (1.t) can be continued analytically across 30,

hence *, defined by lemma 2.1, can be continued analytically across an.

For nonanalytic boundary curves the following lemma gives the smoothness of

u on 39. The lemma is a special case of Theorem 7.1 of Eisenstat [3].

Lemma 2.2

Let 3 e Cmax(p1),y and let u solve (1.1). Then u e c '().

-3-



3. A METHOD FOR APPROXIMATING ANALYTIC OR HARMONIC FUNCTIONS

The connection between solutions of (1.1) and analytic functions shown by

lemma 2.1 motivates the present section. We summarize an approximation method

for analytic functions that is described in more detail in [8].

Lemma 3.1

Let r be a smooth curve exterior to an, and let S denote the doubly

connected region between r and a. Let v be a solution of

I v= 0 in S

(3.1) v = 1 on ai

v = 0 on r

Then

(3.2) c :f f Ln (z)ldzI - f Lv (z)dz > 0
a r an (z~ z >

where 1- denotes the normal derivative, outward w.r.t. S. Let the point
n -1 Byse akn} -sa

set n 1 be equidistributed w.r.t. c I3 on an, i.e. is an
k,n k= n1l~

arbitrary point on an, and the Zj,n, j ) 2, are determined by

jn I v - I

(3.3) f c - (z)ldzl j - 1(1)n5n n

where integration is done counter-clockwise along an. Let the point set

{W n-1 be equidistributed w.r.t. -C- 1 on r. Let *(z) be a
{-kn k1n

function analytic on and interior to the level curve r : {z : v(z) iii

for some v, 0 4 p 4 1. Finally let r (z) be the function inn

(3.4) Q n := span{1,(z - w ), - w)~ .. ( - I}n
sw) ,(z - 4 -1,...,(z

l~n ~ n nlenI



n
uniquely determined by interpolating *(z) at the nodes {z n} . Then

k,n k=1
1/n -2w(1-V)

lim sup 14(z) - r (z)l 4 e
n- zean

Proof. A proof based on results of Walsh [101 is presented in [81.

Assume that the nodes {z I n are given on 39 and ennumerated so

k,n k-1

that Zk,n precedes Zk+1,n, k = I(I)n - 1, when a is traversed counter-

clockwise. We wish to determine a set of poles w }n- 1 equidistributed
k-n k-1

w.r.t. -C -! on a level curve of v. Assume that c I-3 is a piecewise
an an

constant function with jumps at the Zn" The assumption that (zn I be
zk~n' ',n k=1

- 3v -1 v v
equidistributed w.r.t. c - and c f n (z)Idzl = I determinesnan n

uniquely on an. This suggests that we determine level curves r and point

sets {Wk n-I by solving (3.1) as an initial value problem for v, with

av
v and j- known on DO. A simple numerical method for solving this initial

value problem is described in [8] and computed examples are given in Section

5. Here we only note that we do not need to solve the initial value problem

to high accuracy, and we generally do not put r very far from an.

Therefore we can obtain a satisfactory approximate solution to this ill-posed

problem. We next turn to the o ,oice of basis for the representation of

rn(Z). The basis implicit in the deFinition (3.4) of Qn is generally ill-

conditioned. In 181 it is shown that the following basis functions are fairly

well-conditioned

0o(Z) :-I
(3.5) n z - z n-1 - wi

t k(Z ) := R -~ T1 Z w,, ,n k =10I)n-I

J=1 'k,n zj,n j-1 z
J~k,

This basis we will use when computing eigenvalues and eigenfunctions.

-5-
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4. THE COLLOCATION METHOD

The elgenvalue problem (1.1), we solve as a sequence of Dirichlet

problems, i.e. for given X we solve

(4.1a) A Au + lu =0

(4. 1b) I u 0

for u and determine iteratively values of X for which (4.1) has nontrivial

solutions u. The iteration method has previously been used by Moler [5].

Equations (4.1) are solved by boundary collocation. Let {z In and
k,n k=1

(w 1 be point sets on ail and r, respectively, as described in
k,n k=l

Section 3. Let the set of collocation points {Zkm} 1, m = 2n - 1, be

distributed equidistantly on 39 w.r.t. to the same density function as

{z In .  Introduce the particular solutions of (4.1a),

k,n k=1

V0 (z,) Re(1 0.5X(;-; ( (-)) d()

0 Zln

2j() Re(t c Z) - 0.sx(;-! 1, 1 dC)

(4.2) , X(z-C)(z-z1

j = 1(1)n - I

zJ
V 2j1(2,X) Im(z (-) o.sX(z-z1,n) f (4) dC)

Zl,n/ z-;(-)

j 1(1)n- 1

where the functions A (z) are defined by (3.5). We require the boundary

condition to be satisfied at the collocation points. This yields the system

of equation
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2n- 1
(4.3) a v(z'~,) 0 k = 1(1), mn 2n - 1

j-1 k k mO)=0

We seek X such that (4.3) has a nontrivial solution

T
a- Q10 2'P ... O 2n-1~ or equivalently, we want the matrix

(4.4) A :=(a 1, a V (z ,A) j = 1(1)2n-1, k = 1(1)m, mn 2n-1
kj Icj j k , MA

to be singular. We achieve this by computing the singular value decomposition

of A =AM

H
A -UEV

where U,V are orthonormal (2n - 1) x (2n -1) matrices and

E = diag(0110 2 '...' .2n-1), with a I 0 a2 > .. > a2n-1 )o 0. We determine

X such that a021 = a02n 1 (X) vanishes, i.e. first we tabulate

X +0a2n-1X) to find a local minimum, and then by fitting quadratics we

minimize 0 (A). (ar (2 is a smooth function of A while a MA
2n-1 2n-1 2n-1

is not). Let X denote a value of A corresponding to a local minimum of

a 2n1(A). X is an approximate elgenvalue of (4.1). A method to estimate

or bound the error in X is discussed below. Following Moler 15], we note

that A satisfies

min min IA(A)al 2 = min IA(X al
X Icl = I lei

-2 -2

and that a is the last column of V. Hence,

(4.5) u(Z) = 2n-1 *

is an approximate eigenfunction. if also a 2n-2 ( is near 0, then A

-7-
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is an approximate double eiqenvalue. The coefficients of the other

eigenfunction are in the next to last column of V.

The integrals in (4.2), we compute by integrating along an and using a

Lobatto rule between each pair of collocation points ((z ,), (z+1,m)). We

note that the functions I (z) have to be computed only once at the Lobatto
2

abscissae. The minimization scheme for 02 () is designed so that we in

each iteration know values AXA with A X A A " As the iterations

proceed X - + * 0. This enables the computation of the Bessel functions in

the integrands (4.2) by linear interpolation when 0 < Xr - A is small.

Remark 4.1

In order to facilitate the detection of eigenvalues the basis functions used

should be well-conditioned in the sense that 02n1 (A) >> 0 for A between

local minima of a (A). Moreover, for A = A , a local minimum of
2n-1

a2n 1 (A), there should be a k such that
* * * *

k >> ak+1 ak+2(X a2n-1 (X 0

so that the multiplicity of the eigenvalue can be determined easily. In all

computed examples the basis (4.2) satisfied these requirements.

Remark 4.2
c

The allocation of collocation points Zkm can be done quite arbitrarily. In

all examples we have distributed the collocation points equidistantly w.r.t.

arc length. a

Remark 4.3

The choice of function space for the approximation of eigenfunctions is based

on lemma 3.1, which discugses approximation of analytic functions by certain

rational function. By taking real and imaginary parts, we obtain the harmonic

functions V1(zO),0..,V 2n.1(zO). Approximation of harmonic functions by

boundary collocation has so far been studied only when the approximating

-8-



functions are harmonic polynomials, see Curtiss (2]. These results suggest

that the collocation points {zk c)I should be used when approximating by
k ,m k I

function (4.2) with A = 0. For X > 0 no results are known, and we expect

for large values of X least squares collocation to yield better

approximations. In least squares collocation, see Moler (6], one chooses

m > 2n - I in (4.3) and solves (4.3) in the least squares sense. Again this

leads to the singular value decomposition of the matrix (4.4), but now one

seeks local minima of A + 02n(A).(ff u 2 dxdy) - ', where u is defined by
2n-1

(4.5). Numerical experiments indicate that, indeed, the approximation errors

in the eigenvalues and eigenfunctions decrease when least square collocation

is used. However, the decrease in error was small, and in all computed

examples a more efficient way to reduce the error was to increase the number

of basis Functions and let m = 2n-1. In the numerical examples referred to,

ag was analytic and X < 10.

We conclude this section with some comments on the computation of error

bounds as described in Moler dnd Payne [7]. Let A be a real nonnegative

number and define u (z) as

* n 
u (z) I a V (Z,)

j=1 : j

Let Ak be the eigenvalue of (1.1) closest to A , and let uk(z) be the

eigenfunction belonging to A k* Moler and Payne [7] show how bounds for

A - k  and u - uk  can be computed. We only give their result on bounds

for A - A •k

Lemma 4.1

Let £ := max "u (z)I.(area of Q) /2.(jf (u) 2 dxdy) 1 . Then there is an

zean * ,
A A

eigenvalue of Xk oF (4.1) in the interval 1 + E 4 < 4 - * 

-9-
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The double integralff (u*) 2dxdy we compute by numerical quadrature,

and we neglect round-offs during all computations. We therefore only compute

error estimates. The integration rule of the next lemma was chosen because of

its simplicity.

Lemma 4.2

Let I :- {(J,k) : ((x,y) : Ijh - xl 4 h, Ikh - yl 4 h) C U) • Then for a

sufficiently smooth function u which vanishes on 3,

Iff u2 (x,y)dxdy - h2  1 u2(jh,kh)l 4 Ch3

Q (J,k)CI

where C is a constant.

Proof. See appendix.

-10-
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5. NUMERICAL EXAMPLES

In all examples the collocation points , , m 2n-1, and the

points [z }n in the definition of the function (3.5) are equidistributed
k,n k-1

on ag w.r.t. arc length. By solving (3.1) as an initial value problem for

v and iu on M we compute approximate level curves ? of v and point
n-i -1 _v

sets {wk 1 which are approximately equidistributed w.r.t. -c a on

n-1r. Below we show graphs with 2, curves ? and points {w k,n I . In all

examples the integrals in (4.2) have been computed by integrating along 39

and using a 10-point Lobatto rule between each pair of collocation points
c

(z ,z.+ 1,m, j - I(I)m - 1. The double integrals in the error bound of

Lemma 4. 1 have been computed by the method of Lemma 4.2. We have computed

If u2 dxdy for different values of h, and decreased h until we were

certain that the value of the integral was known with 2 significant digits.

All computations were done on a VAX 11/780 in double precision, i.e. with 12

significant digits. In the first example, we determine eigenvalues for an

elliptic membrane for which the lowest eigenvalue is known with high accuracy.

1 2 2
Ex. 5.1 12 :- {(x,y) : x + y I1. Figure 5.1 shows Q, approximate

level curves r and the points wj, 8 , j - 1(1)8, at the vertices of the

outermost approximate level curve. The wj,8  are used to define 17 basis

functions (4.2).

Figure 5.2 is similar to Figure 5.1, but now 16 points wj, 1 7 '

J - 1()16 are shown on the outermost approximate level curve r. The 16

points wj 1 7 define 33 basic functions (4.2).

The E in the table is defined in lemma 4.1. The table gives the 3

smallest eigenvalues determined, the smallest of which is known, see [5], to

lie in the interval [3.56672658, 3.5667266141.

-11-
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w 3 ,9

w 2,9
9

r

Figure 5.2: 33 basis functions
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No. of Computed Est. Upper Bound for Eigenvalue
Basis Facts Eiqenvalue C Et. Lower Bound for Eigenvalue

3.5670
17 3.56672688 8.5 ° 10- 5

3.5664

3.56672662

33 3.566726603 2.8 a 10- 9

3.56672659

6.306
17 6.27535 4.7 ° 10-3

6.245

6.275439
33 6.275432466 9.4 * 10-7

6.275426

11.36
17 10.034 1.2 * 10-1

8.98

10.02863
33 10.028402 2.2 * 10-5

10.02817

The error estimates generally appear to be quite conservative.

Ex. 5.2 Let 0 be the interior of the curve

ai :- {x(t) + iy(t), x(t) :- 1.4 cos(t) + 2.8 cos(2t) - 2.8

y(t) : 1.6 sin(t) + 2.45 sin(t - 0.2) + 0.98 sin(2t) -

- 0.49 sin(4t) - 0.74, 0 4 t < 2w) ,

see Figure 5.3. The lowest eigenvalue has been computed with different

numbers of basis functions

-13-



1 , 1 7

zr

Figure 5.3: 33 basis functions

w 3,25

Figure 5.4: 49 basis functions



Figure 5.5: 65 basis functions

3, 4 9

Figure 5.6: 97 basis functions
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No. of Computed Eat. Upper Bound for Eigenvalue

Basis Facts Eigenvalue Zat. Lower Bound for Eigenvalue

33 1.2259 2.4

49 1.22980 1.4

1.241

65 1.2305134 8.4 * 10- 3

1.220

1.2353
97 1.23053147 3.8 * 10.3

1.2252

The points wJn for the different bases are shown in Figures 5.3-5.6. The

allocation of poles wj for 33 and 65 basis functions is similar, and so is

the allocation for 49 and 97 basis functions. The example shows that the

allocation of poles does influence the rate of convergence, but the computed

eigenvalues are not very sensitive to differences in allocation. *
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APPENDIX

Proof of lea 4.2

we assume for simplicity that u e C4() Let Sb esur

~~ LIl( and let f = u 2 . Then, Efngels (41, oh. 8,

Tf : Jf(x,y)dxdy
s

1Ah (2f(0.01 +- f~h,O) + f(-h,) + f(,h) + f(,-h)) + O~h

This yields

2 a~~- 2f 6
Tf h f(0,0) (0,0) + -i(0,0)) + 0(h

tat S U tx,y) : jii - xI 4 1,h -1 hl-Ten

(j,k)eI

ff f(x,y)dxdy ff f(x,y)dxdy + ffi f(x,y)djcdy

S \

~ ~ j~k) 4  a 2 j~k f (jh,kh))
h jhk)+h(2(hk) ++

+ If f(x,y)dxdy + O(h6

2 !Lf + !L. 2 2((ju)2 + (al)2 + uAu) yields

We nowflmake use of that finu. 2 2 ax a
ax ay



2  (L (jhkh) + A2f (jhkh))
(J,k)eI 3x2  ay2

- II (x.y) + (x,y) dxdy + O(h2 ) "
2x

2  
ay2

ff (1, 
2  + (2 ) +uAudxdy + h) ' 2 f. u s + O(h)

2

2 xa as
S

where denotes the outward normal derivative 
from S. By definition of

S, the distance between IS and 39 is < h. Since grad u is bounded in

, and u = 0 on M, we have If. u d.1 4 dlh, for some constant d 1au

as

Similarly ff u2dxdy f d2h
2 f didy ( d3h , for some constants d2 ,d3 -

This completes the proof.
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